Article ID Journal Published Year Pages File Type
5521637 European Journal of Pharmaceutics and Biopharmaceutics 2017 7 Pages PDF
Abstract

Chitosan is one of the most important and commonly used natural polysaccharides in drug delivery for its biocompatible and biodegradable properties. However, poor blood circulation of the chitosan nanoparticles due to their cationic nature is one of the major bottlenecks of chitosan-based drug delivery systems. To address this problem, a versatile platform based on poly(acrylic acid) (PAA) coated ionically cross-linked chitosan/tripolyphosphate nanoparticles (CTS/TPP-PAA NPs), is reported. The zeta potentials of CTS/TPP and CTS/TPP-PAA NPs are approximately 33 mV and −25 mV, respectively. CTS/TPP NPs quickly aggregate in PBS (phosphate buffered saline) and DMEM (Dulbecco's modified Eagle's medium). Conversely, CTS/TPP-PAA NPs exhibit excellent colloidal stability in plasma solution for more than 24 h. The PAA coating also endows CTS/TPP-PAA NPs with decreased protein adsorption capacity and improved buffering capacity. More importantly, the residual carboxyl and amino groups on CTS/TPP-PAA NPs provide abundant reactive sites for further functional modifications. Therefore, the CTS/TPP-PAA NPs reported here may be useful as an alternative drug delivery system.

Graphical abstractCTS/TPP-PAA nanoparticles with a positively charged core and negatively charged surface were successfully fabricated. And PAA endowed CTS/TPP-PAA NPs with excellent stability in plasma and rapid endosomal escape.Download high-res image (123KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biotechnology
Authors
, , , , , , , ,