Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5525549 | Cancer Letters | 2017 | 12 Pages |
â¢MCAM/CD146 is highly up-regulated and ERα is decreased in MCF-7 breast cancer cells resistance to tamoxifen.â¢MCAM overexpression promotes epithelial mesenchymal transition and activates AKT pathway.â¢The elevated MCAM expression is significantly associated with poorer prognosis in ERα positive breast cancer.
Tamoxifen resistance presents a prominent clinical challenge in endocrine therapy for hormone sensitive breast cancer. However, the underlying mechanisms that contribute to tamoxifen resistance are not fully understood. In this study, we established a tamoxifen resistant MCF-7 cell line (MCF-7-Tam-R) by continuously incubating MCF-7 cells with 4-OH-tamoxifen. We found that melanoma cell adhesion molecule (MCAM/CD146), a unique epithelial-to-mesenchymal transition (EMT) inducer, was significantly up-regulated at both mRNA and protein levels in MCF-7-Tam-R cells compared to parental MCF-7 cells. Mechanistic research demonstrated that MCAM promotes tamoxifen resistance by transcriptionally suppressing ERα expression and activating the AKT pathway, followed by induction of EMT. Elevated MCAM expression was inversely correlated with recurrence-free and distant metastasis-free survival in a cohort of 4142 patients with breast cancer derived from a public database, particularly in the subgroup only treated with tamoxifen. These results demonstrate a novel function of MCAM in conferring tamoxifen resistance in breast cancer. Targeting MCAM might be a promising therapeutic strategy to overcome tamoxifen resistance in breast cancer patients.