Article ID Journal Published Year Pages File Type
5525554 Cancer Letters 2017 10 Pages PDF
Abstract

•TCF3 (E2A)-HLF-positive leukemia exhibits sensitivity to PARP inhibitor.•TCF3-HLF expression suppressed homologous recombination repair activity.•TCF3-HLF expression suppressed MCPH1 level.

Poly (ADP-ribose) polymerase (PARP) is an indispensable component of the DNA repair machinery. PARP inhibitors are used as cutting-edge treatments for patients with homologous recombination repair (HRR)-defective breast cancers harboring mutations in BRCA1 or BRCA2. Other tumors defective in HRR, including some hematological malignancies, are predicted to be good candidates for treatment with PARP inhibitors. Screening of leukemia-derived cell lines revealed that lymphoid lineage-derived leukemia cell lines, except for those derived from mature B cells and KMT2A (MLL)-rearranged B-cell precursors, were relatively sensitive to PARP inhibitors. By contrast, acute myelogenous leukemia cell lines, except for RUNX1-RUNXT1 (AML1-ETO)-positive lines, were relatively resistant. Intriguingly, TCF3 (E2A)-HLF-positive leukemia was sensitive to PARP inhibitors. TCF3-HLF expression suppressed HRR activity, suggesting that PARP inhibitor treatment induced synthetic lethality. Furthermore, TCF3-HLF expression decreased levels of MCPH1, which regulates the expression of BRCA1, resulting in attenuation of HRR activity. The PARP inhibitor olaparib was also effective in an in vivo xenograft model. Our results suggest a novel therapeutic approach for treating refractory leukemia, particularly the TCF3-HLF-positive subtype.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , ,