Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5526125 | Differentiation | 2017 | 12 Pages |
•Nlk1 regulates Xenopus gastrulation via PAPC-dependent Wnt/PCP control.•Direct interaction of Nlk1 with PAPC stabilizes both proteins.•The kinase activity of Nlk1 is not essential for the regulation of PAPC.•Conserved serine residues in the PAPC C-terminus control its stability and function.
The Wnt/planar cell polarity (PCP) pathway directs cell migration during vertebrate gastrulation and is essential for proper embryonic development. Paraxial protocadherin (PAPC, Gene Symbol pcdh8.2) is an important activator of Wnt/PCP signaling during Xenopus gastrulation, but how PAPC activity is controlled is incompletely understood. Here we show that Nemo-like kinase 1 (Nlk1), an atypical mitogen-activated protein (MAP) kinase, physically associates with the C-terminus of PAPC. This interaction mutually stabilizes both proteins by inhibiting polyubiquitination. The Nlk1 mediated stabilization of PAPC is essential for Wnt/PCP signaling, tissue separation and gastrulation movements. We identified two conserved putative phosphorylation sites in the PAPC C-terminus that are critical for Nlk1 mediated PAPC stabilization and Wnt/PCP regulation. Intriguingly, the kinase activity of Nlk1 itself was not essential for its cooperation with PAPC, suggesting an indirect regulation for example by impeding a different kinase that promotes protein degradation. Overall these results outline a novel, kinase independent role of Nlk1, wherein Nlk1 regulates PAPC stabilization and thereby controls gastrulation movements and Wnt/PCP signaling during development.