Article ID Journal Published Year Pages File Type
5526982 Experimental Cell Research 2017 6 Pages PDF
Abstract

•Fibroblasts undergo durotaxis on gradients coated with fibronectin but not laminin.•Migration on gradients coated with a mixture of fibronectin and laminin is random.•Soluble laminin prevents durotaxis on fibronectin-coated mechanical gradients.•ECM type is a key determinant of a cell's response to mechanical gradients.

Extracellular matrix composition and stiffness are known to be critical determinants of cell behavior, modulating processes including differentiation, traction generation, and migration. Recent studies have demonstrated that the ECM composition can modulate how cells migrate in response to gradients in environmental stiffness, altering a cell's ability to undergo durotaxis. These observations were limited to single varieties of extracellular matrix, but typically cells are exposed to environments containing complex mixtures of extracellular matrix proteins. Here, we investigate migration of NIH 3T3 fibroblasts on mechanical gradients coated with one or more type of extracellular matrix protein. Our results show that NIH 3T3 fibroblasts exhibit durotaxis on fibronectin-coated mechanical gradients but not on those coated with laminin, demonstrating that extracellular matrix type can act as a regulator of cell response to mechanical gradients. Interestingly, NIH 3T3 fibroblasts were also observed to migrate randomly on gradients coated with a mixture of both fibronectin and laminin, suggesting that there may be a complex interplay in the cellular response to mechanical gradients in the presence of multiple extracellular matrix signals. These findings indicate that specific composition of available adhesion ligands is a critical determinant of a cell's migratory response to mechanical gradients.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , ,