Article ID Journal Published Year Pages File Type
5527786 Leukemia Research 2017 8 Pages PDF
Abstract

•A 5′-triphosphate modified MDR1 specific siRNA against leukemia cells was proposed.•Mechanisms include immune activation, pro-apoptosis and reverse drug resistance.•It can synergize with doxorubicin which also has immune induction effects.

Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5′-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , ,