Article ID Journal Published Year Pages File Type
5528808 Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2017 6 Pages PDF
Abstract

•ZnO-NP-induced toxicity is reduced by TiO2-NPs.•DNA repair capacity after ZnO-NP-induced DNA damage is enhanced by TiO2-NPs.•Interaction of zinc ions and TiO2-NPs may be the reason for toxicity antagonism.

Titanium dioxide nanoparticles (TiO2-NPs) and zinc oxide nanoparticles (ZnO-NPs) are often used in sunscreens and other consumer products due to their photoprotective properties. However, concern exists regarding them possibly causing cyto- and genotoxic effects. The aim of this study was to assess cyto- and genotoxicity of these nanomaterials after single or combined exposure. For this purpose, a battery of cell culture test systems for human nasal mucosa (monolayer, air-liquid interface and mini organ culture) were exposed to 0.1-20 μg/ml of TiO2- and ZnO-NPs alone and in combination. Cytotoxicity was measured by the MTT assay, and DNA damage and repair capacity were investigated using the comet assay. TiO2-NPs did not exhibit any cyto- or genotoxic potential within the tested concentrations. However, results of the study indicated cyto- and genotoxicity resulting from ZnO-NPs. The genotoxicity could be antagonized by TiO2-NPs. Furthermore, the DNA repair capacity after ZnO-NP-induced DNA damage was enhanced by TiO2-NPs. The adsorption of dissolved zinc ions onto TiO2-NPs is discussed as the major antagonistic mechanism. The combination of both metal oxide nanoparticles interferes with the genotoxicity of ZnO-NPs and should be discussed as a reasonable and safe alternative to the sole use of ZnO-NPs in consumer products.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , ,