Article ID Journal Published Year Pages File Type
5531617 Developmental Biology 2017 10 Pages PDF
Abstract

•We review how Xenopus egg extracts have been used to study genome maintenance pathways.•We highlight how specific DNA templates were used in these studies.•Recapitulation of these processes in extract has provided many insights into their molecular mechanisms.

DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology