Article ID Journal Published Year Pages File Type
5531892 Developmental Biology 2017 11 Pages PDF
Abstract

•The Sce gene, a member of the Polycomb group, inhibits Dp53-dependent apoptosis.•High levels of SCE do not produce any developmental effect in the wing.•High levels of SCE inhibit apoptosis for which it requires dRYBP function.•High levels of SCE inhibit stress-induced and tumor-associated apoptosis.

The Polycomb group (PcG) of proteins control developmental gene silencing and are highly conserved between flies and mammals. PcG proteins function by controlling post-translational modification of histones, such as ubiquitylation, which impacts chromatin compaction and thus gene transcription. Changes in PcG cellular levels have drastic effects on organismal development and are involved in the generation of human pathologies such as cancer. However, the mechanisms controlling their levels of expression and their physiological effects are only partially understood. In this work we describe the effects of modulating levels of SCE/dRING, a conserved E3 ubiquitin ligase and member of the PcG known to mono-ubiquitylate histone H2A. We find that inactivation of Sce induces apoptosis, an effect that is decreased in the absence of Dp53 function. However, over-expression of SCE produce no developmental effects but inhibits DP53-induced apoptosis. Thus, Sce functions as a Dp53-dependent apoptosis inhibitor. The SCE inhibition of DP53-induced apoptosis requires dRYBP, an ubiquitin binding protein and member of the PcG. Moreover, this inhibition of apoptosis involves the reduction of DP53 protein levels. Finally, high levels of SCE inhibit X-ray induced apoptosis as well as the apoptosis associated with tumor growth. We propose that SCE, together with dRYBP, inhibits apoptosis either by epigenetically regulating Dp53 transcription or by controlling the stabilization of DP53 protein levels thus promoting its ubiquitylation for proteaosomal degradation. This function may generate a homeostatic balance between apoptosis and proliferation during development that provides cell survival during the initiation and progression of disease processes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,