Article ID Journal Published Year Pages File Type
5532533 Fungal Genetics and Biology 2017 9 Pages PDF
Abstract

•MHG1 gene knockout N. crassa mutant shows short-lifespan and mutagen sensitivity.•MHG1 gene encodes a high mobility group box protein localizing in mitochondria.•mtDNA decrease in mhg1KO strain suggests MHG1 helps to maintain mtDNA stability.

To elucidate genetic mechanisms affecting the lifespan of the filamentous fungus Neurospora crassa, we attempted to identify a gene of which a defect causes a short-lifespan. By screening a Neurospora knockout library, provided by the Fungal Genetics Stock Center at Kansas State University, several KO strains with a short-lifespan were isolated. FGSC#11693 is one of these, which shows similar phenotypes to known Neurospora short-lifespan mutants as follows: 1) hyphal growth ceases after about 2 weeks of cultivation, despite that of the wild-type continuing for over 2 years, 2) viability of conidia is lower than that of the wild-type, and 3) high sensitivity to mutagens such as methyl methanesulfonate, ultraviolet radiation, and hydroxyl urea is exhibited. The NCU number of the knocked-out gene in the KO strain is NCU02695, and recovery from the short-lifespan and mutagen sensitivity was achieved by the introduction of this gene from the wild-type. The putative amino acid sequence of the knocked-out gene contains two high mobility group box domains and a mitochondrial localization signal is found at the N-terminal of this sequence. Upon analyzing the subcellular localization of the gene product fused with GFP, GFP signals were detected in mitochondria. From these observations, the gene and KO strain were named mitochondrial high mobility group box protein 1 (MHG1) and mhg1KO strain, respectively. The amount of mtDNA relative to the nuclear amount was lower in the mhg1KO strain than in the wild-type. mtDNA aberration was also observed in the mhg1KO strain. These results suggest that the MHG1 protein plays an important role in the maintenance of mitochondrial DNA, and mitochondrial abnormality caused by mtDNA aberration is responsible for the short-lifespan of the mhg1KO strain.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,