Article ID Journal Published Year Pages File Type
5533419 Journal of Molecular and Cellular Cardiology 2017 9 Pages PDF
Abstract

•The p.D242N mutation in KV7.1 slows the activation and eliminates inactivation.•D242N KV7.1 + KCNE1 malfunction is due to a positive shift of the activation curve.•Patients carrying this mutation lost the adaptation to fast heart rate.•D242 may contribute to the fine-tuning modulation of KV7.1 by KCNE1.

KV7.1 and KCNE1 co-assemble to give rise to the IKs current, one of the most important repolarizing currents of the cardiac action potential. Its relevance is underscored by the identification of > 500 mutations in KV7.1 and, at least, 36 in KCNE1, that cause Long QT Syndrome (LQTS). The aim of this study was to characterize the biophysical and cellular consequences of the D242N KV7.1 mutation associated with the LQTS. The mutation is located in the S4 transmembrane segment, within the voltage sensor of the KV7.1 channel, disrupting the conserved charge balance of this region. Perforated patch-clamp experiments show that, unexpectedly, the mutation did not disrupt the voltage-dependent activation but it removed the inactivation and slowed the activation kinetics of D242N KV7.1 channels. Biotinylation of cell-surface protein and co-immunoprecipitation experiments revealed that neither plasma membrane targeting nor co-assembly between KV7.1 and KCNE1 was altered by the mutation. However, the association of D242N KV7.1 with KCNE1 strongly shifted the voltage dependence of activation to more depolarized potentials (+ 50 mV), hindering IKs current at physiologically relevant membrane potentials. Both functional and computational analysis suggest that the clinical phenotype of the LQTS patients carrying the D242N mutation is due to impaired action potential adaptation to exercise and, in particular, to increase in heart rate. Moreover, our data identify D242 aminoacidic position as a potential residue involved in the KCNE1-mediated regulation of the voltage dependence of activation of the KV7.1 channel.

Graphical abstractDownload high-res image (80KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , , , , , ,