Article ID Journal Published Year Pages File Type
5549175 Neuropharmacology 2017 11 Pages PDF
Abstract

•Oxidative stress in the hypothalamus is associated with hypertension.•Oleuropein supplementation attenuated hypertension symptoms in SHR.•Oleuropein inhibited PVN oxidative stress in SHR.•Oleuropein attenuated PVN mitochondrial impairment in SHR.•The effect of oleuropein on the PVN may occur via the activation of the Nrf2 pathway.

Hypertension is associated with increased reactive oxygen species (ROS) production in the paraventricular nucleus (PVN) of the hypothalamus. Oleuropein (OL) has a variety of biochemical roles, including antihypertensive and antioxidative functions. However, there have been few reports on the effects of OL on oxidative stress in the PVN on hypertension. In spontaneously hypertensive rats (SHR), eight-week administration of 60 mg/kg/day of OL significantly reduced blood pressure, pro-inflammatory cytokines and the expression of components of the renin-angiotensin system (RAS) compared with SHR rats treated with saline. Concomitantly, OL inhibited superoxide, and increased the antioxidant defense system in the PVN of SHR. We also found that OL increased mitochondrial biogenesis through mtDNA, PGC-1α, Complex II and Complex IV expression and regulated mitochondrial dynamics through the fusion-related protein Mfn2 and fision-related protein DRP1 to attenuate mitochondrial impairment. Furthermore, the phase II enzyme levels of Nrf2 and its downstream proteins NQO-1 and HO-1 were all markedly increased in the PVN of the OL-treated SHR group compared with the saline-treated SHR rats. Our findings demonstrate that OL administration can protect the PVN of the hypothalamus from oxidative stress by improving mitochondrial function through the activation of the Nrf2-mediated signaling pathway.

Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , , , , ,