Article ID Journal Published Year Pages File Type
5549281 Phytomedicine 2017 18 Pages PDF
Abstract

BackgroundAsarone is one of the most researched phytochemicals and is mainly present in the Acorus species and Guatteria gaumeri Greenman. In preclinical studies, both α- and β-asarone have been reported to have numerous pharmacological activities and at the same time, many studies have also revealed the toxicity of α- and β-asarone.PurposeThe purpose of this comprehensive review is to compile and analyze the information related to the pharmacokinetic, pharmacological, and toxicological studies reported on α- and β-asarone using preclinical in vitro and in vivo models. Besides, the molecular targets and mechanism(s) involved in the biological activities of α- and β-asarone were discussed.MethodsDatabases including PubMed, ScienceDirect and Google scholar were searched and the literature from the year 1960 to January 2017 was retrieved using keywords such as α-asarone, β-asarone, pharmacokinetics, toxicology, pharmacological activities (e.g. depression, anxiety).ResultsBased on the data obtained from the literature search, the pharmacokinetic studies of α- and β-asarone revealed that their oral bioavailability in rodents is poor with a short plasma half-life. Moreover, the metabolism of α- and β-asarone occurs mainly through cytochrome-P450 pathways. Besides, both α- and/or β-asarone possess a wide range of pharmacological activities such as antidepressant, antianxiety, anti-Alzheimer's, anti-Parkinson's, antiepileptic, anticancer, antihyperlipidemic, antithrombotic, anticholestatic and radioprotective activities through its interaction with multiple molecular targets. Importantly, the toxicological studies revealed that both α- and β-asarone can cause hepatomas and might possess mutagenicity, genotoxicity, and teratogenicity.ConclusionsTaken together, further preclinical studies are required to confirm the pharmacological properties of α-asarone against depression, anxiety, Parkinson's disease, psychosis, drug dependence, pain, inflammation, cholestasis and thrombosis. Besides, the anticancer effect of β-asarone should be further studied in different types of cancers using in vivo models. Moreover, further dose-dependent in vivo studies are required to confirm the toxicity of α- and β-asarone. Overall, this extensive review provides a detailed information on the preclinical pharmacological and toxicological activities of α-and β-asarone and this could be very useful for researchers who wish to conduct further preclinical studies using α- and β-asarone.

Graphical abstractDownload high-res image (149KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Clinical Biochemistry
Authors
, , ,