Article ID Journal Published Year Pages File Type
5551688 Antiviral Research 2017 10 Pages PDF
Abstract

•Celastrol inhibits HCV replication.•Celastrol induces HO-1 production.•Celastrol induces interferon-α production and inhibits HCV NS3/4A protease.•Celastrol synergistically inhibits HCV replication in combination with IFN-α, sofosbuvir or daclatasvir.

background and purposeCelastrol, a quinone methide triterpene isolated from the root extracts of Tripterygium wilfordii, can greatly induce the gene expression activity of heme oxygenase-1 (HO-1) to achieve disease prevention and control. HO-1 induction was recently shown to result in anti-HCV activity by inducing type I interferon and inhibiting hepatitis C virus (HCV) NS3/4A protease activity. The aim of the present study is to evaluate the anti-HCV activity of celastrol and characterize its mechanism of inhibition.MethodsThe anti-HCV activity of celastrol was evaluated using the HCV subgenomic replicon and HCVcc infection systems. The anti-HCV mechanism of celastrol targeting HO-1 expression was clarified using specific inhibitors against several signaling pathways. The transcriptional regulation of celastrol on target gene expression was determined using promoter-based reporter activity assay. The synergistic effect of celastrol and a numbers of clinically used anti-HCV drugs was determined via a drug combination assay.ResultsCelastrol inhibited HCV replication in both the HCV subgenomic and HCVcc infection systems with EC50 values of 0.37 ± 0.022 and 0.43 ± 0.019 μM, respectively. Celastrol-induced heme oxygenase 1 (HO-1) expression promoted antiviral interferon responses and inhibition of NS3/4A protease activity, thereby blocking HCV replication. These antiviral effects were abrogated by treatment with the HO-1-specific inhibitor SnMP or silencing of HO-1 expression by transfection of shRNA, which indicates that HO-1 induction contributes to the anti-HCV activity of celastrol. JNK mitogen-activated protein kinase and nuclear factor erythroid 2-related factor 2 (Nrf2) were confirmed to be involved in the inductive effect of celastrol on HO-1 expression. Celastrol exhibited synergistic effects in combination with interferon-alpha, the NS5A inhibitor daclatasvir, and the NS5B inhibitor sofosbuvir.ConclusionCelastrol can serve as a potential supplement for blocking HCV replication. Targeting the JNK/Nrf2/HO-1 axis presents a promising strategy against HCV infection.

Graphical abstractDownload high-res image (125KB)Download full-size image

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , ,