Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5553116 | Biomedicine & Pharmacotherapy | 2017 | 15 Pages |
The extracellular matrix (ECM) is an active and complex microenvironment with outstanding biomechanical, biophysical, and biochemical characteristics, which can indirectly or directly controls cell adhesion, migration, proliferation, and differentiation, as well as partaking in regeneration and homeostasis of organs and tissues. The ECM has captivated a great deal of attention with the rapid progress of tissue engineering (TE) in the field of regenerative medicine (RM). Approaches to TE, RM and cancer therapy center on the necessity to deliver cell signals to direct cell proliferation and differentiation. These “external signals” are induced from cell-cell, and cell-ECM, interactions, as well as from physico-chemical, mechanical stimuli and growth factors. With the advent of new biomaterials such as casein, we gave a general insight into cell-ECM protein interactions in biomaterials and their applications in TE, RM and cancer therapy. An account of the main ECM molecules and cellular receptors with emphasis on integrins and its ligands was given, their effect on the induction of particular signal transduction pathways is also elucidated.