Article ID Journal Published Year Pages File Type
5553168 Biomedicine & Pharmacotherapy 2017 8 Pages PDF
Abstract

The present work endeavors for development and evaluation of resveratrol loaded niosomal hydrogel system for its anti-inflammatory action. Niosomes were prepared by thin film hydration and ether injection methods employing Span 80 as a surfactant at three different levels. Best optimized formulation was selected on the basis of entrapment efficiency (% EE), mean particle size, sedimentation volume, and microscopy. The vesicular and spherical nature of the niosomes was confirmed by optical microscopy and transmission electron microscope (TEM). Further, resveratrol entrapped niosomal gel was prepared by gelling in Carbopol 934, and evaluated for pH, viscosity, and in vitro release, employing dialysis membrane method. The in vitro release data after fitting to various models revealed it to follow Korsmeyer-Pappas model. Ex vivo permeation studies witnessed high permeation and deposition of resveratrol in skin when compared to plain resveratrol. Dermatokinetic studies elaborated that niosomal gel enhanced the biological half-life and reduced Tmax of the drug, in both the skin layers. Finally, in vivo anti-inflammatory activity of niosomal gel was evaluated by carrageenan induced paw edema model and compared with standard sodium diclofenac gel. The resveratrol entrapped niosomal gel sufficiently reduced the edema and revealed prolonged therapeutic action vis-a-vis the marketed anti-inflammatory gel formulation. Our findings suggest that a topical drug delivery system using niosomal hydrogel could lead to expansion in the anti-inflammatory use of resveratrol.

Graphical abstractDownload high-res image (129KB)Download full-size image

Related Topics
Health Sciences Medicine and Dentistry Oncology
Authors
, , , , , , ,