Article ID Journal Published Year Pages File Type
5553182 Biomedicine & Pharmacotherapy 2017 7 Pages PDF
Abstract

New chemotherapeutic compounds and regimens are needed to combat multidrug-resistant Mycobacterium tuberculosis. Here, we used a series of murine models to assess an antitubercular lead compound SKLB-TB1001. In the Mycobacterium bovis bacillus Calmette-Guérin and the acute M. tuberculosis H37Rv infection mouse models, SKLB-TB1001 significantly attenuated the mycobacterial load in lungs and spleens. The colony forming unit counts and histological examination of lungs from H37Rv infected mice revealed that the benzothiazinethione analogue SKLB-TB1001 as a higher dose level was as effective as isoniazid. Moreover, in a multidrug-resistant (MDR)-TB mouse model, SKLB-TB1001 showed significant activity in a dose-dependent manner and was more effective than streptomycin. These results suggested that SKLB-TB1001 could be an antitubercular drug candidate worth further investigation.

Related Topics
Health Sciences Medicine and Dentistry Oncology
Authors
, , , , , , , , , , , ,