Article ID Journal Published Year Pages File Type
5553540 Biomedicine & Pharmacotherapy 2017 6 Pages PDF
Abstract

This study reports the antibacterial properties and modulation analysis of antibiotic activity by β-Ag2MoO4 microcrystals as well as their structural and vibrational characterization. The silver molybdate was obtained by the conventional hydrothermal method, and the structural, vibrational and morphological properties of the sample were determined using X-ray diffraction, Raman spectroscopy and scanning electron microscopy images. β-Ag2MoO4 microcrystals obtained show spinel-type cubic structure (Fd-3m) with irregular shapes. The evaluation of antibacterial and modulatory-antibiotic activity was performed using the microdilution method to determine the Minimum Inhibitory Concentration (MIC) of the β-Ag2MoO4 and antibiotics alone and associated with the silver molybdate. The β-Ag2MoO4 modulates the antibiotic activity against all bacteria assayed in a synergistic (as the norfloxacin and gentamicin against S. aureus and gentamicin against E. coli) or an antagonistic form (as the norfloxacin against E.coli and P. aeruginosa). The reversion of antibiotic resistance by combinations with Ag2MoO4 could be a novel strategy to combat infections caused by multiple drug resistance (MDR) pathogens. Our results indicate that these silver molybdates present a clinically relevant antibacterial activity and enhanced the antibiotic activity of some antibiotics against MDR strain of S. aureus and E. coli, being an interesting alternative to combat antibiotic-resistant bacterial infectious agents.

Related Topics
Health Sciences Medicine and Dentistry Oncology
Authors
, , , , , , , , , ,