Article ID Journal Published Year Pages File Type
5554460 European Journal of Pharmacology 2017 9 Pages PDF
Abstract
Pulmonary fibrosis, a potentially fatal disease, results from acute and chronic interstitial lung diseases. Fucoxanthin (Fx), a carotenoid found in brown seaweed, shows a wide range of pharmacological activities. In this study, we investigated the antifibrotic effects of fucoxanthin and their underlying molecular mechanisms in transforming growth factor-beta1 (TGF-β1)-stimulated human pulmonary fibroblasts (HPFs). Thus, the effects of Fx on TGF-β1-induced expression of fibrotic factors, such as alpha-smooth muscle actin (α-SMA), type 1 collagen, fibronectin, and interleukin-6 (IL-6), in HPFs were investigated. We performed an enzyme-linked immunosorbent assay (ELISA), and a western blot analysis to elucidate the mechanisms underlying the antifibrotic effects of Fx in TGF-β1-stimulated cells. The contractile activity of HPFs was measured using a collagen gel contraction assay. We also investigated the effects of Fx on inflammation and fibrosis in bleomycin (BLM)-induced pulmonary fibrosis mouse model. We observed that Fx inhibited the TGF-β1-induced expression of α-SMA, type 1 collagen, fibronectin, and IL-6 in HPFs. Similarly, markedly inhibition of TGF-β1-induced phosphorylation of p-38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Smad2/Smad3 (Smad2/3) was observed after Fx treatment. Collagen contraction also significantly decreased on fucoxanthin treatment. Intraperitoneal injection of Fx (10 mg/kg) in mice inhibited BLM-induced lung fibrosis and type I collagen protein expression. Overall, our findings suggest that Fx may be effective in the treatment of pulmonary fibrosis owing to its potent antifibrotic activity.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , , , , ,