Article ID Journal Published Year Pages File Type
5557153 Life Sciences 2016 7 Pages PDF
Abstract

AimsExcess sodium causes the development of cardiovascular diseases in conjunction with enhancing renin-angiotensin-aldosterone system (RAAS). Natriuretic peptides are sodium regulators and prevent pathological cardiac alterations by counteracting RAAS. However, it is unknown whether natriuretic peptides inhibit the sodium effect in adverse cardiac alterations. Here, we investigated whether excess salt intake could exacerbate cardiac remodeling in mice with impaired natriuretic peptide signaling.Materials and methodsMice lacking the gene encoding the natriuretic peptide receptor, guanylyl cyclase-A (GC-A), and wild-type mice were administered with either a vehicle substance or a subpressor dose of aldosterone (100 ng/kg/min), alongside low salt (0.001% NaCl), normal salt (0.6% NaCl), or high salt diets (6.0% NaCl) for four weeks. Mice were then sacrificed and the hearts were evaluated by histology and RT-PCR.Key findingsSalt load did not induce cardiac changes in vehicle and aldosterone groups in wild-type mice. On the other hand, cardiac hypertrophy and interstitial fibrosis were significantly exacerbated in a salt dependent manner in GC-A knockout (KO) mice administered aldosterone, and were associated with enhanced gene expression relevant to hypertrophy, fibrosis, and oxidative stress conditions. Of note, excess salt intake increased the expression of Sgk1, serum and glucocorticoid responsive kinase-1, in aldosterone-administered GC-A KO mice. These molecular changes were not observed in wild-type mice.SignificanceThe results of the present study demonstrate that excess salt intake induced cardiac remodeling in conjunction with aldosterone administration in GC-A KO mice, indicating that GC-A signaling attenuated the deleterious salt effect in aldosterone-induced cardiac remodeling.

Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine