Article ID Journal Published Year Pages File Type
5558218 Toxicology and Applied Pharmacology 2017 9 Pages PDF
Abstract

•IPF patients have a reduced antioxidant capacity and an increased inflammatory status.•The antioxidant quercetin reduces markers of inflammation ex vivo in IPF patients.•Quercetin reduces the enhanced oxidant burden in a pro-fibrotic cell model.•Quercetin boosts the antioxidant response by increasing Nrf2 activity in vitro.

Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed pulmonary redox balance associated with inflammation. To restore this balance, antioxidants are often suggested as therapy for IPF but previous clinical trials with these compounds and their precursors have not been successful in the clinic. The exogenous antioxidant quercetin, which has a versatile antioxidant profile and is effective in restoring a disturbed redox balance, might be a better candidate. The aim of this study was to evaluate the protective effect of quercetin on oxidative and inflammatory markers in IPF. Here, we demonstrate that IPF patients have a significantly reduced endogenous antioxidant defense, shown by a reduced total antioxidant capacity and lowered glutathione and uric acid levels compared to healthy controls. This confirms that the redox balance is disturbed in IPF. Ex vivo incubation with quercetin in blood of both IPF patients and healthy controls reduces LPS-induced production of the pro-inflammatory cytokines IL-8 and TNFα. This anti-inflammatory effect was more pronounced in the blood of the patients. Our pro-fibrotic in vitro model, consisting of bleomycin-triggered BEAS-2B cells, shows that quercetin boosts the antioxidant response, by increasing Nrf2 activity, and decreases pro-inflammatory cytokine production in a concentration-dependent manner. Collectively, our findings implicate that IPF patients may benefit from the use of quercetin to restore the disturbed redox balance and reduce inflammation.

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , ,