Article ID Journal Published Year Pages File Type
5558810 Trends in Pharmacological Sciences 2017 15 Pages PDF
Abstract
DNA interstrand crosslinks (ICLs) covalently connect complementary DNA strands. Consequently, DNA replication and transcription are hampered, DNA damage responses (DDR) are initiated, and cell death is triggered. Therefore, drugs inducing ICLs are effective against rapidly growing cancer cells. However, tumors engage a complicated enzymatic machinery to repair and survive ICLs. Several factors, including the post-translational acetylation/deacetylation of lysine residues within proteins, control this network. Histone deacetylases (HDACs) modulate the expression and functions of DNA repair proteins which remove ICLs and control the accessibility of chromatin. Accordingly, histone deacetylase inhibitors (HDACi) are small, pharmacologically and clinically relevant molecules that sensitize cancer cells to ICL inducers. We discuss the mechanism of ICL repair and targets of HDACi within this pathway.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,