Article ID Journal Published Year Pages File Type
5559339 Chemico-Biological Interactions 2017 10 Pages PDF
Abstract

•Pyrazole LQFM021 was able to promote increase of micronucleated HepG2 cells.•LQFM021 promoted irreversible renal and reversible liver changes in rats.•Lower LQFM021 concentrations did not show potential embryotoxicity in zebrafish.•Higher LQFM021 concentrations promoted malformations in embryo-larvae zebrafish.

Scientific evidences have highlighted 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM021) as a promising anti-inflammatory, analgesic and antinociceptive agent due to its effects on peripheral opioid receptors associated with activation of the nitric oxide/cGMP/KATP pathway. Despite these important pharmacological findings, toxicity data of LQFM021 are scarce. Thus, this study investigated the in vitro genotoxicity of LQFM021 through cytokinesis-block micronucleus assay (OECD Nº 487/2014). Moreover, zebrafish model was used to assess the embryotoxicity potential of LQFM021 using fish embryo toxicity test (OECD Nº 236/2013) with extended exposure to evaluate subchronic larval development. In vivo subchronic toxicity of LQFM021 in rats (OECD Nº 407/2008) was also conducted. This compound at the lower concentrations tested (3.1 and 31 μg/mL) did not promote changes in micronuclei frequency in HepG2 cells. However, in the higher concentrations of LQFM021 (310 and 620 μg/mL) triggered a significant increase of micronucleated HepG2 cells, showing an alert signal of potential genotoxicity. Regarding the oral treatment of rats with LQFM021 (62.5, 125 or 250 mg/kg) for 28 days, the main findings showed that LQFM021 promoted renal and liver changes in a dose-dependent manner, being irreversible damage for kidneys while liver tissue showed a recovery after 14 days post treatment. Regarding embryotoxicity, although the lower concentrations used did not show toxicity, the concentration of LQFM021 (39.8 and 100 mg/L) promoted malformations in zebrafish embryo-larvae stage, in especial cardiac tissue changes. In conclusion, anti-inflammatory compound LQFM021 seems to have some limiting factors as a new therapeutic option to be used orally and in high repeated doses, related to those found in the non-steroidal anti-inflammatory drugs (NSAIDs).

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , , , , ,