Article ID Journal Published Year Pages File Type
5559388 Chemico-Biological Interactions 2016 10 Pages PDF
Abstract

•CA had therapeutic detoxification against the hepatotoxicity induced by APAP.•CA blocked APAP-induced Egr1 transcriptional activation.•CA reduced Gadd45α expression induced by APAP.•CA abrogated APAP-induced ERK1/2-mediated Egr1 nuclear translocation.

Caffeic acid (CA) is a natural compound abundant in fruits, coffee and plants. This study aims to investigate the involved mechanism of the therapeutic detoxification of CA against acetaminophen (APAP)-induced hepatotoxicity. CA (10, 30 mg/kg) was orally given to mice at 1 h after mice were pre-administrated with APAP (300 mg/kg). The therapeutic detoxification of CA against APAP-induced hepatotoxicity was observed by detecting serum aminotransferases, liver malondialdehyde (MDA) amount and liver histological evaluation in vivo. CA reduced APAP-induced increase in the mRNA expression of early growth response 1 (Egr1) in hepatocytes, and inhibited APAP-induced Egr1 transcriptional activation in vitro and in vivo. CA reduced the increased expression of growth arrest and DNA-damage-inducible protein (Gadd45)α induced by APAP in hepatocytes. Moreover, Egr1 siRNA reduced Gadd45α expression and reversed APAP-induced cytotoxicity in hepatocytes. Further results showed that CA blocked APAP-induced activation of extracellular-regulated protein kinase (ERK1/2) signaling cascade in vivo and in vitro. In addition, the application of ERK1/2 inhibitors (PD98059 and U0126) abrogated the nuclear translocation of Egr1 induced by APAP in hepatocytes. In conclusion, this study demonstrated the therapeutic detoxification of CA against APAP-induced liver injury, and the inhibition of CA on ERK1/2-mediated Egr1 transcriptional activation was involved in this process.

Graphical abstractDownload high-res image (162KB)Download full-size image

Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , , ,