Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5585203 | Bone | 2017 | 11 Pages |
Abstract
Interleukin (IL)-17 is crucial to osteoclast differentiation and activation. Osteocytes support osteoclast formation and are thought to orchestrate bone remodeling in response to fluid flow. The contribution of IL-17 to osteocyte-related bone resorption remains unclear. Here, we used the osteocyte-like MLO-Y4 cell line to examine the role of IL-17 and fluid flow in osteoclastogenesis. It was the first time to demonstrate that IL-17A promoted MLO-Y4 cell proliferation, enhanced expression of receptor activator of nuclear factor κ-B ligand (RANKL) and tumor necrosis factor-α (TNF-α), and induced osteoclastogenesis when MLO-Y4 cells were co-cultured with bone marrow-derived macrophage (BMM) cells. Additionally, shear stress upregulated osteoprotegerin expression in osteocytes, downregulated the effect of IL-17A on RANKL and TNF-α expression, and attenuated IL-17A-activated osteoclastic differentiation in the co-culture system of MLO-Y4 and BMM cells. Furthermore, we explored the signaling pathways that potentially mediate these effects in osteocytes, and found that the extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT3) pathways were suppressed by IL-17A but induced by fluid flow. EphA2 signaling enhances osteoclastogenesis in osteocytes, and the intercellular reversed EphA2-ephrinA2 signaling from osteocytes to BMM play an important role in IL-17A-dependent osteoclastic differentiation. EphB4 signaling inhibits osteoclastogenesis in osteocytes, and the intercellular reversed EphB4-ephrinB2 signaling from osteocytes to BMM could inhibit IL-17A-dependent osteoclastic differentiation. The current findings suggest that IL-17A as a promoter of bone resorption and fluid shear stress critically regulate bone remodeling via osteocyte-specific signaling pathways. IL-17 modulation-based approaches may be developed as a novel therapeutic strategy for enhancing bone remodeling efficiency and stability.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Developmental Biology
Authors
Chongshan Liao, Tianfan Cheng, Shuai Wang, Chengfei Zhang, Lijian Jin, Yanqi Yang,