Article ID Journal Published Year Pages File Type
5585283 Bone 2017 25 Pages PDF
Abstract
A stainless steel screw was implanted in a rat tibia and left to integrate for 6 weeks. After extracting the tibia, the bone-screw construct was imaged using X-ray and neutron tomography at different resolutions. Artefacts were visible in all X-ray images in the close proximity of the implant, which limited the ability to accurately quantify the bone around the implant. In contrast, neutron images were free of metal artefacts, enabling full analysis of the bone-implant interface. Trabecular structural bone parameters were quantified in the metaphyseal bone away from the implant using all imaging modalities. The structural bone parameters were similar for all images except for the lowest resolution neutron images. This study presents the first proof-of-concept that neutron tomographic imaging can be used for ex-vivo evaluation of bone microstructure and that it constitutes a viable, new tool to study the bone-implant interface tissue remodelling.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Developmental Biology
Authors
, , , , , , , ,