Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5587763 | General and Comparative Endocrinology | 2017 | 10 Pages |
Abstract
To understand the regulation systems of appetite, bioactive peptides from the kuruma shrimp Marsupenaeus japonicus (Mj) were isolated and purified by reverse pharmacological assays using CHO cells expressing the Drosophila melanogaster G-protein-coupled receptors (GPCRs) CG5811 (a RYamide receptor) or CG14593 (a CCHamide-2 receptor). Four peptides having binding activity to GPCRs were obtained and named Mj RYamide-1, Mj RYamide-2, Mj RYamide-3, and Mj CCHamide. Genes encoding the prepropeptides of these peptides were identified using kuruma shrimp transcriptome databases. The Mj prepro-RYamide gene encodes a 130-amino acid polypeptide containing Mj RYamide-1, Mj RYamide-2, and Mj RYamide-3, whereas the Mj prepro-CCHamide gene encodes a 119-amino acid polypeptide containing a single Mj CCHamide peptide. The expression of these genes was confirmed in various neuronal organs including the brain and ventral nerve cord. In addition, prepro-RYamide gene expression is significantly reduced in the brain after starvation. RYamides may thus be associated with regulation of feeding or digestion. Changes in kayak (the c-fos ortholog in invertebrates) gene expression after administration of synthetic peptides were also investigated. Mj kayak expression levels are upregulated in hepatopancreas after treatment with Mj RYamide-3 or CCHamide. Thus, the peptides isolated in this study may have some regulatory effect on cellular metabolism in aquacultured invertebrates.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Endocrinology
Authors
Tohru Mekata, Tomoya Kono, Jun Satoh, Morikatsu Yoshida, Kenji Mori, Takahiro Sato, Mikiya Miyazato, Takanori Ida,