Article ID Journal Published Year Pages File Type
5587836 General and Comparative Endocrinology 2016 9 Pages PDF
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, and its receptor (OX1R) are primarily expressed in lateral hypothalamus and are involved in the control of various biological functions. Expressions of OXA and OX1R have also been reported in peripheral organs like gastrointestinal and genital tracts. In the present study, expressions of OXA and OX1R have been observed in the testis of Parkes strain neonatal mice by semi-quantitative RT-PCR and western blot analyses. Immunohistochemical study also revealed their presence on spermatogonia, Sertoli cells and in the interstitium of the testis. In order to understand the role of OXA and OX1R in testicular development, an in vitro study was also performed. For this, binding of OXA to OX1R was blocked using OX1R specific antagonist, SB-334867. Eighteen mice were sacrificed and their testes were cultured in complete media containing vehicle and two doses (0.1 and 4.0 μg/ml media) of SB-334867 for 72 h in CO2 incubator at 37 °C. At the end of culture period, testes were used for western blot and RT-PCR analyses to study the expression of various markers of gonadal development, such as steroidogenic factor 1 (SF-1), Wilms' tumor 1 (Wt1), Mullerian inhibiting substance (MIS) and stem cell factor (SCF). Further, expressions of OXA, OX1R and glucose transporter 3 (GLUT 3) were also studied. A marked increase in the expression of SF-1 and a decrease in the expression of Wt1 at both transcript and protein levels were noted, while there was a decrease in the expression of SCF and MIS at transcript level at both doses of the antagonist; this suggests that blockage of OXA binding to OX1R by SB-334867 affects testicular development. The decrease in expressions of OXA, OX1R and GLUT 3 in the test is in response to both doses of the antagonist points to their down-regulation causing inefficient uptake of glucose by the testicular cells, thereby affecting gonadal development. In conclusion, our results suggest that the binding of OXA to OX1R is important for the development of the testis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, ,