Article ID Journal Published Year Pages File Type
5589318 Gene 2017 24 Pages PDF
Abstract
The proliferation and differentiation of skeletal muscle satellite cells is regulated by multiple regulatory factors including non-coding RNAs. It has been reported that miR-133b regulates myogenesis. In this study, we detected a novel lncRNA, lnc133b, which is completely complemented by mature miR-133b, indicating that lnc133b may regulate the expression of miR-133b by “sponge” miR-133b. A luciferase report assay confirmed that lnc133b interacts with miR-133b in regions complemented by miR-133b. We successfully constructed lnc133b gain/loss-of-function cell models by infecting LV-1nc133b and transfecting si-lnc133b into satellite cells. Results of quantitative real-time polymerase chain reaction (qRT-PCR) and 5-ethynyl-2′-deoxyuridine (EdU) assays showed that overexpression or inhibition of lnc133b could promote the proliferation or inhibition of satellite cell differentiation. The qRT-PCR results also showed that lnc133b negatively regulates miR-133b expression and a Western blot assay showed that lnc133b positively regulates IGF1R expression, indicating that the lnc133b/miR-133b/IGF1R axis is a potential pathway for promoting satellite cell proliferation and repressing their differentiation through the ceRNA mechanism. Building on the findings of previous reports, we constructed the lnc133b/miR-133b/FGFR1 & PP2AC pathway to improve the lnc133b regulation network regulating the proliferation and differentiation of satellite cells. The current study provides a new perspective for understanding the mechanism regulating satellite cell proliferation and differentiation through the interaction of miR-133b and lnc133b.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , , , ,