Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5589831 | Gene | 2017 | 48 Pages |
Abstract
Transcription factors that activate both proliferation- and apoptosis-effector genes, along with a number of related observations, have led to a proposal for a feed forward mechanism of activating the two gene classes, whereby a certain concentration of a transcription factor activates the proliferation-effector genes and a higher concentration of the transcription factor activates the apoptosis-effector genes. We reasoned that this paradigm of regulation could lead to, in the cancer setting, a selection for relatively reduced copy numbers of apoptosis-effector gene, transcription factor binding sites (TFBS). Thus, the aim of this investigation was to examine the DNA sequencing read depths of TFBS for a set of proliferation- and apoptosis-effector genes, normalized to the read depths found in matching blood samples, as provided by the cancer genome atlas (TCGA); and thereby document copy number differences among these TFBS. We determined that the melanoma and breast cancer, TCGA datasets could be divided into three categories: (i) no detectable copy number variation for the proliferation- and apoptosis-effector, shared TFBS; (ii) a relative increase in the copy number of proliferation-effector gene TFBS, compared with the copy number of the apoptosis-effector gene TFBS; and (iii) a relative decrease in the number of proliferation-effector gene TFBS. Thus, we conclude that changes in the relative copies of the shared TFBS, for proliferation- and apoptosis-effector genes, have the potential of impacting tumor cell proliferative and apoptotic capacities.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Genetics
Authors
James A. Mauro, John M. Yavorski, George Blanck,