Article ID Journal Published Year Pages File Type
5589831 Gene 2017 48 Pages PDF
Abstract
Transcription factors that activate both proliferation- and apoptosis-effector genes, along with a number of related observations, have led to a proposal for a feed forward mechanism of activating the two gene classes, whereby a certain concentration of a transcription factor activates the proliferation-effector genes and a higher concentration of the transcription factor activates the apoptosis-effector genes. We reasoned that this paradigm of regulation could lead to, in the cancer setting, a selection for relatively reduced copy numbers of apoptosis-effector gene, transcription factor binding sites (TFBS). Thus, the aim of this investigation was to examine the DNA sequencing read depths of TFBS for a set of proliferation- and apoptosis-effector genes, normalized to the read depths found in matching blood samples, as provided by the cancer genome atlas (TCGA); and thereby document copy number differences among these TFBS. We determined that the melanoma and breast cancer, TCGA datasets could be divided into three categories: (i) no detectable copy number variation for the proliferation- and apoptosis-effector, shared TFBS; (ii) a relative increase in the copy number of proliferation-effector gene TFBS, compared with the copy number of the apoptosis-effector gene TFBS; and (iii) a relative decrease in the number of proliferation-effector gene TFBS. Thus, we conclude that changes in the relative copies of the shared TFBS, for proliferation- and apoptosis-effector genes, have the potential of impacting tumor cell proliferative and apoptotic capacities.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , ,