Article ID Journal Published Year Pages File Type
5590086 Genomics 2017 10 Pages PDF
Abstract
In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (liy), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16 days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in liy at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in liy developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , , ,