Article ID Journal Published Year Pages File Type
5592069 Molecular Immunology 2017 10 Pages PDF
Abstract
Viral myocarditis (VMC) is an inflammation of the myocardium closely associated with Coxsackievirus B3 (CVB3) infection. Vγ1+γδT cells, one of early cardiac infiltrated innate population, were reported to protect CVB3 myocarditis while the precise mechanism not fully addressed. To explore cytokine profiles and kinetics of Vγ1+γδT and mechanism of protection against VMC, flow cytometry was conducted on cardiac Vγ1 cells in C57BL/6 mice following CVB3 infection. The level of cardiac inflammation, transthoracic echocardiography and viral replication were evaluated after monoclonal antibody depletion of Vγ1γδT. We found that Vγ1+γδT cells infiltration peaked in the heart at day3 post CVB3 infection and constituted a minor source of IFN-γ but major producers for early IL-4. Vγ1γδT cells were activated earlier holding a higher IL-4-producing efficiency than CD4+Th cells in the heart. Depletion of Vγ1+γδT resulted in a significantly exacerbated cardiac infiltration, increased T, macrophage and neutrophil population in heart homogenates and worse cardiomyopathy; which was accompanied by a significant expansion of peripheral IFNγ+CD4+ and CD8 + T cells. Neutralization of IL-4 in mice resulted in an exacerbated acute myocarditis confirming the IL-4-mediated protective mechanism of Vγ1. Our findings identify a unique property of Vγ1+γδT cells as one dominant early producers of IL-4 upon CVB3 acute infection which is a key mediator to protect mice against acute myocarditis by modulating IFNγ-secreting T response.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , , ,