Article ID Journal Published Year Pages File Type
5593563 Physiology & Behavior 2017 40 Pages PDF
Abstract
Acute illness not only reduces the expression of social behavior by sick rodents, but can also lead to avoidance responses when detected by healthy, would-be social partners. When healthy animals interact with a sick partner, an intriguing question arises: does exposure to a sick conspecific elicit an anticipatory immune response that would facilitate defense against future infection? To address this question, healthy adult male Sprague-Dawley rats (N = 64) were given a brief social interaction (30 min) with a partner that was either sick (250 μg/kg injection with lipopolysaccharide [LPS] 3 h prior to test) or healthy (sterile saline injection). During this exposure, social behavior directed toward the healthy or sick conspecific was measured. Additionally, the impact of housing condition was assessed, with rats group- or isolate-housed. Immediately after social interaction, brains were harvested for cytokine assessments within socially-relevant brain structures (olfactory bulb, amygdala, hippocampus and PVN). As expected, behavioral results demonstrated that (i) there was a robust suppression of social interaction directed against sick conspecifics; and (ii) isolate-housing generally increased social behavior. Furthermore, examination of central cytokine expression in healthy experimental subjects revealed a modest increase in TNF-α in rats that interacted with a sick social partner, but only in the olfactory bulb. Among the LPS-injected partners, expected increases in IL-1β, IL-6, and TNF-α expression were observed across all brain sites. Moreover, IL-1β and IL-6 expression was exacerbated in LPS-injected partners that interacted with isolate-housed experimental subjects. Together, these data replicate and extend our prior work showing that healthy rats avoid sick conspecifics, and provide preliminary evidence for an anticipatory cytokine response when rats are exposed to a sick partner. These data also provide new evidence to suggest that recent housing history potently modulates cytokine responses evoked by LPS.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , , ,