Article ID Journal Published Year Pages File Type
5596245 The American Journal of Pathology 2016 12 Pages PDF
Abstract
Congenital diaphragmatic hernia (CDH) is one of the most common and lethal congenital anomalies, and significant evidence is available in support of a genetic contribution to its etiology, including single-gene knockout mice associated with diaphragmatic defects, rare monogenetic disorders in humans, familial aggregation, and association of CDH with chromosomal abnormalities. Structural lung defects in the form of lung hypoplasia are almost invariably seen in patients with CDH and frequently in animal models of this condition. Better understanding of the mechanisms of pulmonary defects in CDH has the potential for creating targeted therapies, particularly in postnatal stages, when therapeutics can have maximum clinical impact on the surviving cohorts. Successful treatment of CDH is dependent on the integration of human genomic and genetic data with developmental expression profiling, mouse knockouts, and gene network and pathway modeling, which have generated a large number of candidate genes and pathways for follow-up studies. In particular, defective alveolarization appears to be a common and potentially actionable phenotype in both patients and animal models.
Related Topics
Health Sciences Medicine and Dentistry Cardiology and Cardiovascular Medicine
Authors
, , ,