Article ID Journal Published Year Pages File Type
56075 Catalysis Today 2011 8 Pages PDF
Abstract

Hydrogen storage for vehicular applications requires high gravimetric/volumetric storage capacity. Ammonia borane (NH3BH3, AB), having hydrogen content as high as 19.6 wt%, has been considered as a highly potential hydrogen storage medium for on-board applications. The AB hydrolytic dehydrogenation system presents a hydrogen capacity up to 7.8 wt% of the starting materials AB and H2O, showing its high potential for chemical hydrogen storage. With significant research efforts, the reaction kinetics has been greatly enhanced under ambient conditions and the catalyst cost has been remarkably lowered for the hydrolytic dehydrogenation of AB in recent five years. Herein, we briefly review the research progresses in catalytic hydrolytic dehydrogeneration from ammonia borane for chemical hydrogen storage. Moreover, we also concisely discuss hydrogen release from aqueous hydrazine boranes, derivatives of AB, as new hydrogen storage materials.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, ,