Article ID Journal Published Year Pages File Type
5618636 Molecular Metabolism 2017 12 Pages PDF
Abstract

•Cell survival is transcriptionally regulated by macrophage alternative activation.•Fatty acid-triggered cell death is increased in Pparδ/γ−/− or Stat6−/− macrophages.•Il-4-Stat6 signaling suppresses lipotoxicity-induced inflammasome activation.•The Stat6-Pparδ/γ axis protects ATMs against lipolysis-induced cell death in vivo.

ObjectiveAlternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses. We investigated the role of M2 macrophages in lipotoxicity-induced inflammation.MethodsWe used microarray experiments to profile macrophage gene expression regulated by two M2 inducers, interleukin-4 (Il-4), and peroxisome proliferator-activated receptor delta/gamma (Pparδ/Pparγ) agonists. Functional validation studies were performed in bone marrow-derived macrophages and mice deprived of the signal transducer and activator of transcription 6 gene (Stat6; downstream effector of Il-4) or Pparδ/Pparγ genes (downstream effectors of Stat6). Palmitic acid (PA) and β-adrenergic agonist were employed to induce macrophage lipid loading in vitro and in vivo, respectively.ResultsProfiling of genes regulated by Il-4 or Pparδ/Pparγ agonists reveals that alternative activation promotes the cell survival program, while inhibiting that of inflammation-related cell death. Deletion of Stat6 or Pparδ/Pparγ increases the susceptibility of macrophages to PA-induced cell death. NLR family pyrin domain containing 3 (Nlrp3) inflammasome activation by PA in the presence of lipopolysaccharide is also increased in Stat6−/− macrophages and to a lesser extent, in Pparδ/γ−/− macrophages. In concert, β-adrenergic agonist-induced lipolysis results in higher levels of cell death and inflammatory markers in ATMs derived from myeloid-specific Pparδ/γ−/− or Stat6−/− mice.ConclusionsOur data suggest that ATM cell death is closely linked to metabolic inflammation. Within WAT where concentrations of free fatty acids fluctuate, M2 polarization regulated by the Stat6-Ppar axis enhances ATM's tolerance to lipid-mediated stress, thereby maintaining the homeostatic state.

Related Topics
Life Sciences Neuroscience Endocrine and Autonomic Systems
Authors
, , , , , , , , , , ,