Article ID Journal Published Year Pages File Type
5628698 Epilepsy Research 2017 17 Pages PDF
Abstract

•Atipamezole, improved motor performance after traumatic brain injury (TBI).•Atipamezole reduced seizure susceptibility after TBI.•Atipamezole had no effect on spatial memory performance after TBI.•SR141716A had no-disease modifying effect on TBI outcome.

Treatment of TBI remains a major unmet medical need, with 2.5 million new cases of traumatic brain injury (TBI) each year in Europe and 1.5 million in the USA. This single-center proof-of-concept preclinical study tested the hypothesis that pharmacologic neurostimulation with proconvulsants, either atipamezole, a selective α2-adrenoceptor antagonist, or the cannabinoid receptor 1 antagonist SR141716A, as monotherapy would improve functional recovery after TBI. A total of 404 adult Sprague-Dawley male rats were randomized into two groups: sham-injured or lateral fluid-percussion-induced TBI. The rats were treated with atipamezole (started at 30 min or 7 d after TBI) or SR141716A (2 min or 30 min post-TBI) for up to 9 wk. Total follow-up time was 14 wk after treatment initiation. Outcome measures included motor (composite neuroscore, beam-walking) and cognitive performance (Morris water-maze), seizure susceptibility, spontaneous seizures, and cortical and hippocampal pathology. All injured rats exhibited similar impairment in the neuroscore and beam-walking tests at 2 d post-TBI. Atipamezole treatment initiated at either 30 min or 7 d post-TBI and continued for 9 wk via subcutaneous osmotic minipumps improved performance in both the neuroscore and beam-walking tests, but not in the Morris water-maze spatial learning and memory test. Atipamezole treatment initiated at 7 d post-TBI also reduced seizure susceptibility in the pentylenetetrazol test 14 wk after treatment initiation, although it did not prevent the development of epilepsy. SR141716A administered as a single dose at 2 min post-TBI or initiated at 30 min post-TBI and continued for 9 wk had no recovery-enhancing or antiepileptogenic effects. Mechanistic studies to assess the α2-adrenoceptor subtype specificity of the disease-modifying effects of atipametzole revealed that genetic ablation of α2A-noradrenergic receptor function in Adra2A mice carrying an N79P point mutation had antiepileptogenic effects after TBI. On the other hand, blockade of α2C-adrenoceptors using the receptor subtype-specific antagonist ORM-12741 had no favorable effects on the post-TBI outcome. Finally, to assess whether regulation of the post-injury inflammatory response by atipametzole in glial cells contributed to a favorable outcome, we investigated the effect of atipamezole on spontaneous and/or lipopolysaccharide-stimulated astroglial or microglial cytokine release in vitro. We observed no effect. Our data demonstrate that a 9-wk administration of α2A-noradrenergic antagonist, atipamezole, is recovery-enhancing after TBI.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , , , , ,