Article ID Journal Published Year Pages File Type
5629164 Experimental Neurology 2018 14 Pages PDF
Abstract

•Early exercise training combined with delayed pharmacological treatment restores unassisted overground stepping in adult SCT rats•In these SCT-trained rats the population of premotor INs is maintained to control values•SCT-untrained rats display a shrinked sublesional premotor network•SCT-trained rats display a high plasticity of innervation of lumbar motoneurons

Rats with complete spinal cord transection (SCT) can recover hindlimb locomotor function under strategies combining exercise training and 5-HT agonist treatment. This recovery is expected to result from structural and functional re-organization within the spinal cord below the lesion. To begin to understand the nature of this reorganization, we examined synaptic changes to identified gastrocnemius (GS) or tibialis anterior (TA) motoneurons (MNs) in SCT rats after a schedule of early exercise training and delayed 5-HT agonist treatment. In addition, we analyzed changes in distribution and number of lumbar interneurons (INs) presynaptic to GS MNs using retrograde transneuronal transport of rabies virus.In SCT-untrained rats, we found few changes in the density and size of inhibitory and excitatory inputs impinging on cell bodies of TA and GS MNs compared to intact rats, whereas there was a marked trend for a reduction in the number of premotor INs connected to GS MNs. In contrast, after training of SCT rats, a significant increase of the density of GABAergic and glycinergic axon terminals was observed on both GS and TA motoneuronal cell bodies, as well as of presynaptic P-boutons on VGLUT1 afferents. Despite these changes in innervation the number of premotor INs connected to GS MNs was similar to control values although some new connections to MNs were observed. These results suggest that adaptation of gait patterns in SCT-trained rats was accompanied by changes in the innervation of lumbar MNs while the distribution of the spinal premotor circuitry was relatively preserved.

Graphical abstractEffect of spinal cord transection (SCT-untrained) and training and pharmacological treatment of SCT rats (SCT-trained) on the innervation of GS MNs and on the organization premotor interneurons.Download high-res image (166KB)Download full-size image

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , ,