Article ID Journal Published Year Pages File Type
5631131 NeuroImage 2017 15 Pages PDF
Abstract

•Prefrontal non-invasive brain stimulation targeting specific brain circuits has the potential to be applied in therapeutic settings but reliability, validity and generalisability have to be evaluated.•This is the first study investigating the test-retest reliability of prefrontal tDCS-induced resting-state functional-connectivity (RS fcMRI) modulations.•Analyses of individual RS-fcMRI responses to active tDCS across three single sessions revealed no to low reliability, whereas reliability of RS-fcMRI baselines and RS-fcMRI responses to sham tDCS was low to moderate.•Our pilot data can be used to plan future imaging studies investigating rs-fcMRI effects of prefrontal tDCS.

Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20 minutes of either active or sham tDCS of the dorsolateral PFC (2 mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10 minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC(2,1) = −0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC(2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC(2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and localisation of tDCS effects.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , , ,