Article ID Journal Published Year Pages File Type
5633787 World Neurosurgery 2017 8 Pages PDF
Abstract

BackgroundDiastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy.MethodsTwo hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis.ResultsDSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P < 0.001).Conclusion3D CT was found to be markedly superior to skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , ,