Article ID Journal Published Year Pages File Type
56597 Catalysis Today 2011 12 Pages PDF
Abstract

This paper presents the implementation of the recent methodology called Adaptable Time Warping (ATW) for the automatic identification of mixture of crystallographic phases from powder X-ray diffraction data, inside the framework of a new integrative platform named hITeQ. The methodology is encapsulated into a so-called workflow, and we explore the benefits of such an environment for streamlining discovery in R&D. Beside the fact that ATW successfully identifies and classifies crystalline phases from powder XRD for the very complicated case of zeolite ITQ-33 for which has been employed a high throughput synthesis process, we stress on the numerous difficulties encountered by academic laboratories and companies when facing the integration of new software or techniques. It is shown how an integrative approach provides a real asset in terms of cost, efficiency, and speed due to a unique environment that supports well-defined and reusable processes, improves knowledge management, and handles properly multi-disciplinary teamwork, and disparate data structures and protocols.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,