Article ID Journal Published Year Pages File Type
5666826 International Journal of Antimicrobial Agents 2017 6 Pages PDF
Abstract

•fosA3 was integrated into the chromosomes of Proteus mirabilis with blaCTX-M.•An IS26-flanked composite transposon has mobilised fosA3 and blaCTX-M into the chromosome of P. mirabilis.•Clonal spread of multidrug-resistant avian pathogenic Escherichia coli ST117 with high virulence was observed.

The aim of this study was to investigate the spread and location of the fosA3 gene among Enterobacteriaceae from diseased broiler chickens. Twenty-nine Escherichia coli and seven Proteus mirabilis isolates recovered from one chicken farm were screened for the presence of plasmid-mediated fosfomycin resistance genes by PCR. The clonal relatedness of fosA3-positive isolates, the transferability and location of fosA3, and the genetic context of the fosA3 gene were determined. Seven P. mirabilis isolates with three different pulsed-field gel electrophoresis (PFGE) patterns and five E. coli isolates belonging to sequence type 117 (ST117) and phylogenetic group D were positive for fosA3 and all carried the blaCTX-M gene. In E. coli, the genetic structures IS26-ISEcp1-blaCTX-M-65-IS26-fosA3-1758 bp-IS26 and IS26-ISEcp1-blaCTX-M-3-blaTEM-1-IS26-fosA3-1758 bp-IS26 were present on transferable IncHI2/ST3 and F2:A-:B- plasmids, respectively. However, fosA3 was located on the chromosome of the seven P. mirabilis isolates. IS26-ISEcp1-blaCTX-M-65-IS26-fosA3-1758 bp-IS26 and IS26-blaCTX-M-14-611 bp-fosA3-1222 bp-IS26 were detected in three and four P. mirabilis isolates, respectively. Minicircles that contained both fosA3 and blaCTX-M-65 were shared between E. coli and P. mirabilis. This is the first report of the fosA3 gene integrated into the chromosome of P. mirabilis isolates with the blaCTX-M gene. The emergence and clonal spread of avian pathogenic E. coli ST117 with the feature of multidrug resistance and high virulence are a serious problem.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , , , , ,