Article ID Journal Published Year Pages File Type
5666971 International Journal of Antimicrobial Agents 2017 9 Pages PDF
Abstract

•PD index bound to the efficacy of TZP versus β-lactamase-producing E. coli is fT>threshold.•Tazobactam threshold varies according to the level of β-lactamase expression.•Generic TZP required longer fT>threshold to suppress resistance than innovator.•Non-equivalent generic TZP may lead to higher resistance-related health costs.

Recent studies have shown that the pharmacodynamic (PD) index driving the efficacy of β-lactam/β-lactamase inhibitor combinations such as ceftazidime/avibactam and ceftolozane/tazobactam is the percentage of time the free inhibitor concentration is above a threshold (fT>threshold). However, data with piperacillin/tazobactam (TZP) are scarce. Here we aimed to assess the relationship between fT>threshold and TZP antibacterial efficacy by a population pharmacokinetic study in mice and dose-effect experiments in a neutropenic murine thigh infection model with two isogenic strains of Escherichia coli differentially expressing TEM-1 β-lactamase. We also explored the dynamics of resistance selection with the innovator and a non-equivalent generic, extrapolated the results to the clinic by Monte Carlo simulation of standard TZP doses, and estimated the economic impact of generic-selected resistance. The fT>threshold index described well the efficacy of TZP versus E. coli, with threshold values from 0.5 mg/L to 2 mg/L and mean exposures of 42% for stasis and 56% for 1 log10 kill. The non-equivalent generic required a longer exposure (fT>threshold 33%) to suppress resistance compared with the innovator (fT>threshold 22%), leading to a higher frequency of resistance selection in the clinical simulation (16% of patients with the generic vs. 1% with the innovator). Finally, we estimated that use of TZP generics in a scenario of 25% therapeutic non-equivalence would result in extra expenses approaching US$1 billion per year in the USA owing to selection of resistant micro-organisms, greatly offsetting the savings gained from generic substitution and further emphasising the need for demonstrated and not assumed therapeutic equivalence.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , ,