Article ID Journal Published Year Pages File Type
5672988 Journal of Virological Methods 2017 23 Pages PDF
Abstract
This study describes the first multiway comparison of portable isothermal assays for the detection of foot-and-mouth disease virus (FMDV), benchmarked against real-time reverse transcription RT-PCR (rRT-PCR). The selected isothermal chemistries included reverse transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription recombinase polymerase amplification (RT-RPA). The analytical sensitivity of RT-LAMP was comparable to rRT-PCR (101 RNA copies), while RT-RPA was one log10 less sensitive (102 RNA copies). Diagnostic performance was evaluated using a panel of 35 samples from FMDV-positive cattle and eight samples from cattle infected with other vesicular viruses. Assay concordance for RT-LAMP and RT-RPA was 86-98% and 67-77%, respectively, when compared to rRT-PCR, with discordant samples consistently having high rRT-PCR cycle threshold values (no false-positives were detected for any assay). In addition, a hierarchy of sample preparation methods, from robotic extraction to simple dilution of samples, for epithelial suspensions, serum and oesophageal-pharyngeal (OP) fluid were evaluated. Results obtained for RT-LAMP confirmed that FMDV RNA can be detected in the absence of RNA extraction. However, simple sample preparation methods were less encouraging for RT-RPA, with accurate results only obtained when using RNA extraction. Although the evaluation of assay performance is specific to the conditions tested in this study, the compatibility of RT-LAMP chemistry with multiple sample types, both in the presence and absence of nucleic acid extraction, provides advantages over alternative isothermal chemistries and alternative pen-side diagnostics such as antigen-detection lateral-flow devices. These characteristics of RT-LAMP enable the assay to be performed over a large diagnostic detection window, providing a realistic means to rapidly confirm positive FMD cases close to the point of sampling.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , , , ,