Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5688079 | Kidney International | 2017 | 11 Pages |
Abstract
Vascular adhesion protein-1 (VAP-1) is a unique molecule since it acts as an adhesion molecule as well as an ectoenzyme catalyzing oxidative deamination of primary amines and generates hydrogen peroxide in the extracellular space. While VAP-1 is implicated in various inflammatory diseases, its role in acute kidney injury is less characterized. Here we studied VAP-1 expression in the kidney and the effect of its inhibition in a rat model of renal ischemia/reperfusion injury. VAP-1 was predominantly expressed in pericytes, which released enzymatically active enzyme. In vivo, a specific VAP-1 inhibitor, RTU-1096, significantly ameliorated rat renal ischemia/reperfusion injury and decreased neutrophil infiltration measured 12 hours after injury without altering macrophage or T lymphocyte populations. The protective effect of VAP-1 inhibition was lost in neutrophil-depleted rats, suggesting its inhibition ameliorated renal ischemia/reperfusion injury by suppressing neutrophil infiltration. To investigate whether hydrogen peroxide generated by VAP-1 enzyme reaction enhances neutrophil infiltration, we conducted an under-agarose migration assay with purified human neutrophils. Recombinant human VAP-1 significantly induced neutrophil migration, which was almost completely inhibited by RTU-1096 or catalase. Thus, VAP-1 plays a critical role in the pathophysiology of renal ischemia/reperfusion injury by enhancement of neutrophil infiltration generating a local hydrogen peroxide gradient. Hence, VAP-1 inhibition may be a novel therapy in ischemic acute kidney injury.
Related Topics
Health Sciences
Medicine and Dentistry
Nephrology
Authors
Shinji Tanaka, Tetsuhiro Tanaka, Takahisa Kawakami, Hideki Takano, Mai Sugahara, Hisako Saito, Yoshiki Higashijima, Junna Yamaguchi, Reiko Inagi, Masaomi Nangaku,