Article ID Journal Published Year Pages File Type
57330 Catalysis Today 2009 6 Pages PDF
Abstract

TiO2 and 1% Au/TiO2 powders, synthesised by flame spray pyrolysis and possessing high specific surface area (106 m2 g−1) and anatase content (ca. 90%), were tested as photocatalysts in hydrogen production from methanol photoreforming, employing a closed recirculation apparatus. The irradiated photoreactor consisted either in a quartz vessel containing an aqueous suspension of the photocatalyst, or in a newly set-up Plexiglas cell, containing the same amount of catalyst immobilised on quartz grains, which was continuously fed with methanol/water vapours. The gas-phase composition during irradiation was analysed by gas chromatography and quadrupolar mass spectrometry, which allowed the identification of formaldehyde as the only intermediate species. The photocatalytic activity of the flame-made materials was higher than that of commercial Degussa P25 TiO2 and of 1% Au/P25 obtained via deposition of preformed gold nanoparticles on P25. In particular, a 30 times higher photocatalytic hydrogen production was obtained upon gold addition to TiO2. Furthermore, a 30% higher reaction rate was attained with the vapour phase reactor, i.e. in the absence of liquid-phase mass transfer rate limitations, ensuring the production of up to 10.2 mmol of H2 h-1 gcat-1, with an apparent photon efficiency of 6.3%.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,