Article ID Journal Published Year Pages File Type
57368 Catalysis Today 2009 5 Pages PDF
Abstract

In this paper we evaluate the effect of the acidity of the support (HZSM-5) and the nature of the interaction between the active phases of the bifunctional Pt/HZSM-5 catalyst on the aromatic ring-opening of pyrolysis gasoline under hydrocracking conditions. The catalysts were characterized by N2 adsorption–desorption isotherms, CO chemisorption, pyridine FTIR, NH3 adsorption-DSC and NH3 TPD. The catalyst screening in the pyrolysis gasoline hydrocracking demonstrated that: (i) the conversion of pyrolysis gasoline is linearly dependent on support acidity. At low acidities values the main mechanisms of ring-opening is through hydrogenolysis and thus, the less acidic catalyst shows higher conversion than expected; (ii) the synergysm between the metal and acid-sites is enhanced when using a bifunctional catalyst instead of a hybrid one, due to the increase in H2 spill-over efficiency. However, in terms of activity, the most acid catalyst (hybrid) shows the highest aromatic conversion, in correspondence with (i).

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,