Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5737390 | Neuroscience | 2017 | 30 Pages |
Abstract
In the neocortex, interaction and cooperation between different areas are important for information processing, which also applies to different areas within one sensory modality. In the temporal cortex of rodents and cats, both the primary auditory cortex (A1) and the anterior auditory field (AAF) have tonotopicity but with a mirrored frequency gradient. However, whether and how A1 modulates the responses in AAF is largely unknown. Here, we functionally identified the locations of A1 and AAF in rats and used an optogenetic approach to manipulate the activity of A1 in vivo. We found that activation of A1 axon terminals in AAF did not change AAF responses, but activating A1 neuronal cell bodies could increase the sound-evoked responses in AAF, as well as decrease the intensity threshold and broaden the frequency bandwidth, while suppressing A1 could cause the opposite effects. Our results suggested that A1 could modulate the general excitability of AAF through indirect pathways, which provides a potential relationship between these two parallel auditory ascending pathways.
Keywords
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Guangwei Zhang, Can Tao, Chang Zhou, Sumei Yan, Zhaoqun Wang, Yi Zhou, Ying Xiong,