Article ID Journal Published Year Pages File Type
5737604 Neuroscience 2017 32 Pages PDF
Abstract
Diabetes comes with an additional burden of moderate to severe hyperlipidemia, but little is known about the effects of lipid-lowering therapy on diabetic complications such as diabetes-associated cognitive decline. Herein we investigated the effects of statins on memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Our data indicated that oral administration of simvastatin at 10 or 20 mg/kg for 4 weeks significantly ameliorated diabetes-associated memory impairment reflected by performance better in the Morris water maze and Y-maze tests. The further study showed that these treatments caused significant increase of peroxisome proliferator-activated receptors gamma and decrease of NF-κB p65 in nucleus of hippocampus and cortex, and ameliorated neuroinflammatory response as evidenced by less Iba-1-positive cells and lower inflammatory mediators including IL-1β, IL-6 and TNF-α as well as suppressed neuronal apoptosis as indicated by decreased TUNEL-positive cells, increased ratio of Bcl-2/Bax and decreased caspase-3 activity in the hippocampus and cortex. Moreover, simvastatin pronouncedly attenuated amyloidogenesis by decreasing amyloid-β, amyloid precursor protein (APP) and beta-site APP cleaving enzyme-1. As expected, treated with simvastatin, the diabetic mice exhibited significant improvement of hyperlipidemia rather than hyperglycemia. Our findings disclosed novel therapeutic potential of simvastatin for the diabetes-associated cognitive impairment.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , , , ,