Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5737701 | Neuroscience | 2017 | 16 Pages |
Abstract
The incidence of sudden unexpected death in epilepsy (SUDEP) is highest in people with chronic and drug-resistant epilepsy. Chronic spontaneous recurrent seizures cause cardiorespiratory autonomic dysfunctions. Pituitary adenylate cyclase-activating polypeptide (PACAP) is neuroprotective, whereas microglia produce both pro- and anti-inflammatory effects in the CNS. During acute seizures in rats, PACAP and microglia produce sympathoprotective effect at the intermediolateral cell column (IML), whereas their action on the presympathetic rostral ventrolateral medulla (RVLM) neurons mediates proarrhythmogenic changes. We evaluated the effect of PACAP and microglia at the IML on sympathetic nerve activity (SNA), cardiovascular reflex responses, and electrocardiographic changes in the post-status epilepticus (SE) model of acquired epilepsy, and control rats. Chronic spontaneous seizures in rats produced tachycardia with profound proarrhythmogenic effects (prolongation of QT interval). Antagonism of microglia, but not PACAP, significantly reduced the SNA and the corrected QT interval in post-SE rats. PACAP and microglia antagonists did not change baroreflex and peripheral or central chemoreflex responses with varied effect on somatosympathetic responses in post-SE and control rats. We did not notice changes in microglial morphology or changes in a number of M2 phenotype in epileptic nor control rats in the vicinity of RVLM neurons. Our findings establish that microglial activation, and not PACAP, at the IML accounts for higher SNA and proarrhythmogenic changes during chronic epilepsy in rats. This is the first experimental evidence to support a neurotoxic effect of microglia during chronic epilepsy, in contrast to their neuroprotective action during acute seizures.
Keywords
PBSO.D.PaCO2IBA1PACAPIMLQT intervalAUCkainic acidECGelectrocardiogramimmunoreactiveintrathecalcluster of differentiationintermediolateral cell columnHeart ratePartial pressure of carbon dioxidemean arterial pressureOuter diameterPhosphate-buffered salinearea under curvemappituitary adenylate cyclase-activating polypeptide
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Amol M. Bhandare, Komal Kapoor, Kim L. Powell, Emma Braine, Pablo Casillas-Espinosa, Terence J. O'Brien, Melissa M.J. Farnham, Paul M. Pilowsky,